Перевод: со всех языков на все языки

со всех языков на все языки

A method was developed for

  • 1 structured systems analysis and design method

    Gen Mgt
    a technique for the analysis and design of computer systems. The structured systems analysis and design method was developed by the Central Computer and Telecommunications Agency in the United Kingdom in the early 1980s. The technique adopts a structured methodology toward systems development through the use of data flow, logical data, and entity event modeling. Core development stages include: feasibility study; requirements analysis; requirements specification; logical system specification; and physical design. All the steps and tasks within each stage must be complete before subsequent stages can begin.
    Abbr. SSADM

    The ultimate business dictionary > structured systems analysis and design method

  • 2 Monte Carlo method

    Gen Mgt
    a statistical technique used in business decision making that involves a number of uncertain variables, such as capital investment and resource allocation. The name of the Monte Carlo method derives from the use of random numbers as generated by a roulette wheel. The numbers are used in repeated simulations, often performed by spreadsheet programs on computers, to calculate a variety of possible outcomes. The technique was developed by mathematicians in the early 1960s for use in nuclear physics and operational research but has since been used more widely.

    The ultimate business dictionary > Monte Carlo method

  • 3 каждый в отдельности

    Each of the loops is sufficient by itself to deliver 100 percent of the required cooling.

    * * *
    Каждый в отдельности-- A method was developed for measuring the volumes of the individual cavitation pits.

    Русско-английский научно-технический словарь переводчика > каждый в отдельности

  • 4 для ... разработали специальный метод

    Для... разработали специальный метод-- A method was developed for measuring the volumes of the individual cavitation pits.

    Русско-английский научно-технический словарь переводчика > для ... разработали специальный метод

  • 5 ошибочные результаты

    Ошибочные результаты-- This method was developed for the analysis of light distilates and can give erroneous results with heavier distillates such as diesel fuel.

    Русско-английский научно-технический словарь переводчика > ошибочные результаты

  • 6 метод ветвей и границ

    Разработан в 1963 году для решения задачи коммивояжера, связанной с выбором его маршрута от базы через несколько мест с возвращением на базу при минимальном расстоянии или времени. — This method was developed in 1963 for solving the traveling salesman problem, which involves the routing of a salesman from a base through several locations and back to the base, in minimum distance or time.

    Методы исследования операций и программирования дают научные критерии для максимизации прибыли, минимизации затрат и выбора наиболее выгодной комбинации продуктов. — The methods of operations research and programming provide scientific criteria for maximizing profit, minimizing cost, and selecting the most profitable combination of products.

    Russian-English Dictionary "Microeconomics" > метод ветвей и границ

  • 7 метод

    method, process, procedure, approach, technique, practice, tool, strategy
    Безо всяких изменений данный метод подходит для... - The method lends itself readily to...
    Более подходящим методом является... - A better technique is to...
    Более прямой метод получения величины F рассматривается в главе 9. - A more direct procedure for obtaining F is considered in Chapter 9.
    Более подходящим методом является определение... - A more satisfactory method is to establish...
    Большинство из этих более продвинутых методов требует... - Most of these more advanced methods require...
    Были предложены несколько методов. - Several techniques have been suggested.
    Было довольно нелегко разработать метод для... - It was fairly difficult to develop a method for...
    Было довольно сложно разработать метод для... - It was quite difficult to develop a method for...
    Было легко разработать метод для... - It was easy to develop a method for...
    Было относительно легко (= просто) разработать метод для... - It was relatively easy to develop a method for... (not easy on an absolute scale, but less challenging than other tasks)
    Было почти невозможно разработать метод для... - It was almost impossible to develop a method for... (so hard that we nearly failed)
    В альтернативном методе мы вычисляем... - In the alternative method we calculate...
    В данной главе мы представим метод для... - In this chapter, we shall formulate the procedure for...
    В данном приближенном методе существенно... - In this approximation procedure it is essential to...
    В качестве примера применения описанного выше метода мы показываем, что... - As an example of the method described above we show that...
    В недавние годы этот метод был улучшен посредством использования (чего-л). - In recent years the subject has been enriched by the use of...
    В основном мы следуем методу... - In essence we follow the procedure of...
    В последние годы несколько авторов отказались от этого метода. - Several authors have, in recent years, departed from this procedure.
    В своих основных чертах это был метод, использовавшийся Смитом [1]. - In essence, this was the method employed by Smith [1].
    В соответствии с методом, намеченным в Главе 1, мы... - In accordance with the method outlined in Chapter 1, we...
    В этой главе мы даем эффективный метод... - In this chapter we give an efficient method for...
    Вместо этого давайте разработаем (один) общий метод, посредством которого... - Instead, let us develop a general method whereby...
    Во многих случаях необходимо обращаться за помощью к приближенным методам. - In many cases it is necessary to resort to approximate methods.
    Возможно, безопасно применить метод... к... - It is probably safe to apply the method of... to...
    Возможно, наилучшим методом является... - Perhaps the best approach is to...
    Все вышеупомянутые методы не применимы для малых х. - The foregoing methods all fail for small x.
    Второй метод вывода уравнения (1) формулируется следующим образом. - A second method of obtaining (1) is as follows.
    Второй метод точно согласуется с... - The latter method agrees precisely with...
    Вышеуказанным методом обнаружено (= найдено), что... - By the above method it is found that...
    Геометрически метод состоит в следующем. - Geometrically, the procedure is as follows.
    Главное преимущество данного метода заключается в том, что... - The chief advantage of the method is that...
    Главным преимуществом данного метода является его общность. - The principal advantage of the method is its generality.
    Главным преимуществом данного метода по сравнению с традиционными является то, что... - The major advantage of this procedure over the traditional method is that...
    Главным преимуществом данного метода является его простота. - The principal virtue of the method is its simplicity.
    Далее, в данном методе заранее предполагается, что... - Further, the method presupposes...
    Данное свойство является основой одного метода нахождения... - This property provides one method of determining...
    Данный метод был предложен в статье [1]. - The method was suggested by Smith, et al. [1].
    Данный метод намного точнее, чем... - The present method is much more precise than...
    Данный метод не применим для/в... - The method does not apply to...
    Данный метод невозможно применить, когда/ если... - The method is not applicable when...
    Данный метод одинаково успешно можно применять к... - The method can equally well be applied to...
    Данный метод особенно подходит в случае, когда... - The method is particularly appropriate when...
    Данный метод позволяет... - The method enables one to...
    Данный метод позволяет исследователю... - The method allows an investigator to...
    Данный метод применим к широкому классу (в широком классе)... - The method is applicable to a large class of...
    Данный метод прост и довольно интересен, однако... - This method is simple and quite interesting, but...
    Данный отчет описывает новый метод... - This report describes a new method of...
    Данным методом можно решить ряд важных практических задач. - This method enables us to solve several problems of practical importance.
    Детали этого метода можно найти в [1]. - Details of the method can be found in Smith [1].
    Для... можно применить несколько методов. - Several methods are available for...
    Для получения... был использован ряд методов. - A number of methods have been used to obtain...
    Для преодоления этой трудности был разработан один метод. - One method has been advanced for overcoming this difficulty.
    Должны быть развиты методы для измерения... - Methods should be developed for measuring...
    Достоинство этого метода состоит в том, что... - The advantage of the method is that...
    Другим недостатком этого метода является то, что... - The other disadvantage of this procedure is that...; Another disadvantage of this procedure is that...
    Его метод доказательства весьма оригинален. - The method of proof is quite ingenious.
    Единственный доступный нам в настоящее время метод - это... - The only method available to us so far is...
    Единственным известным недостатком этого метода является то, что... - The only known disadvantage of this procedure is that...
    Еще одним методом является... - Still another approach is to...
    Здесь рассматривается (один) общий метод получения этих решений. - A general method of obtaining these solutions is considered here.
    Важность наших методов состоит в том, что они будут давать... - The significance of our methods is that they will yield...
    Значительно более удобный метод состоит в том, что... - A far more convenient approach is to...
    Имеются два обычно используемых метода для... - There are two commonly used methods for...
    Имеются три метода решения такой задачи. - There are three ways of attacking such a problem.
    Интересным альтернативным методом является следующий. - An interesting alternative procedure is as follows.
    Используя данный метод, следует помнить, что... - In using this method it is well to remember that...
    Используя любой подобный метод, необходимо (помнить и т. п.)... - With any method such as this it is necessary to...
    Используя этот метод, они нашли, что... - Using the method, they found that...; Using the method, they learned that...; Using the method, they determined that...; Using the method, they discovered that...
    Используя этот новый метод, мы можем... - By this new method it will be possible to...
    Итак, мы наметим несколько методов, которые могут использоваться для того, чтобы... - We therefore outline some procedures which can be used to...
    К сожалению, этот метод оказался неприменим. - Unfortunately, the method was not applicable; The method, unfortunately, was not applicable.
    К счастью, имеется один простой и подходящий для этого метод. - Fortunately, there is a simple technique available for doing this.
    Каков недостаток этого метода? - What is the disadvantage of this procedure?
    Каковы преимущества данного метода? - What are the advantages of this procedure?
    Конечно, это могло бы быть следствием неподходящих методов. - Of course, this could reflect the use of inappropriate methods.
    Конечно, этот метод не всегда применим. - Of course, this method will not always work.
    Коротко, мы будем интересоваться методами, которые... - In short, we will inquire into the ways in which...
    Кратко опишем метод для его оценки. - A method for estimating this will be given shortly.
    Метод... должен быть применен к/в... - The method of... should apply to...
    Метод... мог бы быть надежно применен для... - The method of... could safely be applied to,..
    Метод анализа, намеченный в предыдущем абзаце, показывает... - The method of analysis outlined in the last paragraph shows...
    Метод может использоваться для оценки... - The method can be used to estimate...
    Метод обладает очевидным преимуществом... - The method possesses the obvious advantage of...
    Метод основывается на принципе, что... - This method is based on the principle that...
    Метод перестает быть достаточно точным, если... - The method ceases to be reasonably accurate if...
    Метод состоит в следующем. - The procedure is as follows.
    Метод состоит из двух шагов. - The approach is in two steps.
    Метод требует от пользователя обеспечить... - The method requires the user to provide...
    Метод, который здесь описывается, требует... - The method to be described here involves...
    Метод, который мы описали, в общем случае не подходит для... - The procedure we have described is not, in general, suitable for...
    Метод, приведенный в этом параграфе, подобным образом может быть применен к... - The method of sections may be applied in a similar way to...
    Метод, с помощью которой это было получено, известен как... - The technique by which this is achieved is known as...
    Методы, которые мы рассмотрели, позволяют нам... - The methods we have considered enable us to...
    Можно использовать множество методов. Например,... - A variety of methods may be employed, e. g.,...
    Можно ожидать, что метод обеспечит нахождение по меньшей мере одного корня. - The method can be expected to provide at least one root.
    Мы будем придерживаться этого метода. - We shall follow this method.
    Мы ввели широкий класс методов решения... - We have introduced a wide range of procedures for solving...
    Мы можем обратить метод и вывести, что... - We can reverse the process and deduce that...
    Мы наметим в общих чертах метод, основанный на... - We will outline a procedure based on...
    Мы откладываем обсуждение подобных методов до параграфа 5. - We defer the discussion of such methods to Section 5.
    Мы принимаем полностью отличный от данного метод. - We adopt an entirely different method.
    Мы проиллюстрируем данный метод для случая... - We shall illustrate the procedure for the case of...
    Мы считаем, что метод... можно применять к/в... - We believe that the method of... is applicable to...
    Мы увидим, что эти методы могут использоваться лишь тогда, когда... - It will be observed that these methods are only applicable when...
    Мы упоминаем лишь два таких метода... - We mention only two such methods of...
    На данный метод часто ссылаются как на... - This process is often referred to as...
    На самом деле оба метода используются на практике. - Both methods are in fact used in practice.
    На сегодняшний день важность этого метода заключается в том, что... - For the present, the significance of this process lies in the fact that...
    Наиболее важным преимуществом данного метода является то, что... - The primary advantage of this procedure is that...
    Наиболее просто следовать этому методу в случае... - The procedure is most simply followed for the case of...
    Наиболее часто используемые методы перечислены ниже:... - The methods that are most often used follow:...
    Наиболее широко используемые методы основываются на... - The techniques most widely used are based on...
    Наиболее широко используемый метод это тот, что был введен Смитом [1]. - The method most commonly employed is that introduced by Smith [1].
    Наш метод будет весьма существенно отличаться от данного. - Our procedure will be quite different from this.
    Нашей основной целью является описание систематических методов для... - Our first concern is to describe systematic methods for...
    Не существует систематического метода определения... - There is no systematic way of determining...
    Недостатком данного метода является то, что он требует... - The disadvantage of this procedure is that it requires...
    Недостаток этого метода можно видеть... - The flaw in this approach can be seen by...
    Несколько методов анализа были введены с помощью... - Several methods of analysis are introduced by means of...
    Ни один из этих методов не требует... - Neither of these methods requires...
    Ниже описываются два подобных метода. - Two such methods are described below.
    Обнаружилось, что данный метод (здесь) не приложим. - It turned out that the method was not applicable.
    Обнаружилось, что данный метод успешно используется в широкой области... - The method is found to be successful on a wide range of...
    Обычно считают, что Смит [1] положил начало этому методу. - Smith [1] is usually credited with originating this method.
    Обычным методом является измерение... - A common procedure is to measure...
    Один такой несколько искусственный метод занимается... - One such trick is concerned with...
    Одна элегантная версия данного метода использует... - An elegant version of this method employs...
    Однако данный метод требует предварительного знания... - However, this method presupposes a knowledge of...
    Однако лучше всего ввести этот метод, рассматривая... - However, the method is best introduced by considering...
    Однако метод может не сработать даже при отсутствии... - However, the procedure may fail even in the absence of...
    Однако мы воспользуемся здесь более общим методом, разработанным Воровичем [1]. - But we shall follow here a more general method due to Vorovich [1].
    Однако мы легко можем разработать метод для... - We can, however, easily devise a means for...
    Однако решения все еще могут быть получены при помощи чисто численных методов. - Solutions can still be obtained, however, by resorting to purely numerical methods.
    Однако существует стандартный метод работы с... - However, there is a standard method of dealing with...
    Однако этот метод не работает, будучи примененным к... - This approach, however, breaks down when applied to...
    Однако этот метод совершенно не удовлетворяет нашим целям. - This procedure, however, falls far short of our goal.
    Одним из преимуществ этого метода является то, что... - One advantage of this procedure is that...
    Одним общим недостатком данного метода является наличие... - One common drawback of this method is the presence of...
    Оказывается, данный метод первоначально появился в работах Смита [1]. - The method appears to have originated in the works of Smith [1].
    Описанная выше процедура представляет один строгий метод... - The procedure described above represents a rigorous method of...
    Описанный выше метод может быть использован для построения... - The procedure described above can be used to construct...
    Описанный здесь метод всегда приводит... - The procedure described here always yields...
    Основной слабостью метода является... - The main weakness of the method is...
    Отличительным преимуществом данного метода является то, что... - A distinct advantage of the procedure is that...
    Отличный от вышеупомянутого метод был предложен Джонсом [1]. - A different method has been given by Jones [1].
    Перед этим не имелось общепризнанного метода... - Prior to this, there was no generally accepted method of...
    Подобные методы могут использоваться в более сложных ситуациях. - Similar methods may be employed in more complicated cases.
    Подобный метод был рассмотрен Смитом [1], который... - Such a procedure has been considered by Smith [1], who...
    Подобный метод может быть принят, когда... - A similar method may be adopted when...
    Подобный метод применяется к/в... - A similar method applies to...
    Пользуясь такими методами, мы можем избежать... - By such expediencies we can avoid...
    Потенциальное преимущество данного метода состоит в том, что... - A potential advantage of this procedure lies in the fact that...
    Поэтому мы применяем слегка модифицированный метод. - We therefore adopt a slightly different method.
    Предпочтительным, однако, является метод... - The preferred method, however, is to...
    Преимущество этого метода заключается в том, что... - The advantage of this method lies in the fact that...
    Преимущество этого метода, следовательно, состоит в том, что он обеспечивает простой... - The advantage < this procedure, therefore, is that it provides a simple...
    Применение данного метода ограничено... - The application of this method is confined to...
    Применение данного метода показывает... - An application of this process shows...
    Применение данного специального метода оправдано (чем-л). - The adoption of this particular method is justified by...
    Проиллюстрируем общий метод, рассматривая... - We illustrate the general method by considering...
    Рассматриваемые до сих пор методы касаются... - The methods considered so far have been concerned with...
    Результаты всех этих методов согласуются с... - The results of all these methods are consistent with...
    Решающим недостатком этого метода является то, что... - The crucial disadvantage of this procedure is that...
    С другой стороны, этот метод даст... - On the other hand, this method will give...
    Открытие Смита сделало возможным новый метод... - Smith's discovery made possible a new method of...
    Самым простым из таких методов является (метод)... - The simplest such method is...
    Следовательно, необходимо развить общий метод для... - It is, therefore, necessary to devise a general method for...
    Следует подчеркнуть, что этот метод должен использоваться только если... - It is to be emphasized that this method should be used only; if...
    Следует уделить внимание методам... - Attention should be given to methods of...
    Следующее рассуждение иллюстрирует метод... - The following treatment illustrates the method of...
    Следующим недостатком этого метода является то, что... - A further disadvantage of this procedure is that...
    Смит [lj обнаружил метод для... - Smith [1] discovered a method for...
    Смит [1] предложил метод вычисления... - Smith [l] has proposed a method of calculating...
    Смит [1] применил этот метод к... - Smith [1] has applied this method to.,.
    Стандартным методом является следующий. - The standard procedure is as follows.
    Таким образом, мы имеем метод, который позволяет... - Thus we have a method which yields...
    Тем не менее, развитые нами методы обеспечивают основу для... - However, the methods we have developed provide a basis for...
    Теперь мы (полностью) готовы использовать методы, разработанные во втором параграфе. - We are now ready to use the methods of Section 2.
    Теперь мы обсудим систематические методы, которые f можно использовать в/ при... - We now discuss systematic methods which can be applied to...
    Теперь мы применим метод Римана, чтобы... - We now apply Riemann's method in order to...
    Только что описанный метод известен как... - The procedure we have described is known as...
    Тот же метод можно применять в/к... - The same method may be applied to...
    Удобным методом достижения необходимой цели является... - A convenient way to accomplish this is to...
    Усовершенствованные экспериментальные методы сделали возможным... - Refined experimental methods have made it possible to...
    Фундаментальным преимуществом этого метода является то, что... - A fundamental advantage of this procedure is that...
    Хотя этот метод и несколько необычен, он справедлив (= работает) как и любой из известных методов. - Although this method is somewhat unorthodox, it is as valid as any of the more familiar methods.
    Центральной идеей, на которой основывался подход Смита [1], была... - The essential idea behind Smith's approach was that...
    Чтобы воспользоваться преимуществами данного метода, необходимо... - In order to take advantage of this procedure, one must...
    Чтобы проиллюстрировать применение метода, мы... - То illustrate the process we...
    Эдисон изобрел новый метод для... - Edison invented a new method for...
    Эдисон обдумывал новый метод для... - Edison devised a new method for...
    Эти методы вводятся в следующем параграфе. - These methods are introduced in the next section.
    Эти методы весьма громоздки. - These processes are tedious.
    Эти методы настолько чувствительны, что... - These methods are so sensitive that...
    Эти методы нельзя применять в случае, когда... - These methods are not applicable in the case of...
    Эти методы очень чувствительны к малым изменениям в... - These methods are very sensitive to small changes in...
    Эти методы получают своих сторонников, так как... - These methods attract proponents because...
    Этим методом (= На этом пути) мы можем получить (вывести и т. п.)... - In this way we can arrive at...
    Это будет объяснено примерами, когда мы будем изучать метод... - This point will be clarified by examples when we study the method of...
    Это известный метод, принятый во многих работах... - This is a familiar procedure, undertaken in many studies of...
    Это иллюстрирует важный метод... - This illustrates an important method of...
    Это можно увидеть двумя методами. - This can be seen in two ways.
    Это несущественный недостаток метода, поскольку... - This is not a serious defect of the method because...
    Это приводит к полезным методам обращения с... - This leads to useful ways of dealing with...
    Это простой метод, который можно проиллюстрировать, рассматривая... - This is a simple procedure which can be illustrated by considering...
    Этот метод аналогичен использованному в... - The procedure is similar to that used in...
    Этот метод был описан Смитом [1]. - The method has been described by Smith [1].
    Этот метод был последовательно доведен до полной эффективности Смитом [3]. - This method was subsequently brought to full fruition by Smith [3].
    Этот метод вполне очевиден. - This procedure is quite straightforward.
    Этот метод доказательства довольно общий и применим к... - The method of proof is quite general and applies to...
    Этот метод известен как... - The procedure is known as...
    Этот метод имеет следующие недостатки. - The procedure has the following disadvantages.
    Этот метод интересен по следующей причине. - This method is of interest for the following reason.
    Этот метод легко адаптируется к/ для... - This procedure is readily adaptable to...
    Этот метод легко понять, замечая, что... - The process is easily understood by noting that...
    Этот метод лучше всего иллюстрируется примером. - The procedure is best illustrated by an example.
    Этот метод наиболее успешен в случае, когда он применяется в... - The method is most successful when applied to...
    Этот метод очевидным образом может быть распространен на (случай)... - This process can clearly be extended to...
    Этот метод принимается, поскольку... - This approach is adopted because...
    Этот метод являлся стандартным в течение многих лет. Несмотря на более новые разработки он будет использоваться и далее. - This approach has been standard for many years, and will continue to be of great use regardless of newer developments.
    Этот технически простой метод действительно требует... - This technically simple method does require...

    Русско-английский словарь научного общения > метод

  • 8 Coolidge, William David

    SUBJECT AREA: Electricity, Metallurgy
    [br]
    b. 23 October 1873 Hudson, Massachusetts, USA
    d. 3 February 1975 New York, USA
    [br]
    American physicist and metallurgist who invented a method of producing ductile tungsten wire for electric lamps.
    [br]
    Coolidge obtained his BS from the Massachusetts Institute of Technology (MIT) in 1896, and his PhD (physics) from the University of Leipzig in 1899. He was appointed Assistant Professor of Physics at MIT in 1904, and in 1905 he joined the staff of the General Electric Company's research laboratory at Schenectady. In 1905 Schenectady was trying to make tungsten-filament lamps to counter the competition of the tantalum-filament lamps then being produced by their German rival Siemens. The first tungsten lamps made by Just and Hanaman in Vienna in 1904 had been too fragile for general use. Coolidge and his life-long collaborator, Colin G. Fink, succeeded in 1910 by hot-working directly dense sintered tungsten compacts into wire. This success was the result of a flash of insight by Coolidge, who first perceived that fully recrystallized tungsten wire was always brittle and that only partially work-hardened wire retained a measure of ductility. This grasped, a process was developed which induced ductility into the wire by hot-working at temperatures below those required for full recrystallization, so that an elongated fibrous grain structure was progressively developed. Sintered tungsten ingots were swaged to bar at temperatures around 1,500°C and at the end of the process ductile tungsten filament wire was drawn through diamond dies around 550°C. This process allowed General Electric to dominate the world lamp market. Tungsten lamps consumed only one-third the energy of carbon lamps, and for the first time the cost of electric lighting was reduced to that of gas. Between 1911 and 1914, manufacturing licences for the General Electric patents had been granted for most of the developed work. The validity of the General Electric monopoly was bitterly contested, though in all the litigation that followed, Coolidge's fibering principle was upheld. Commercial arrangements between General Electric and European producers such as Siemens led to the name "Osram" being commonly applied to any lamp with a drawn tungsten filament. In 1910 Coolidge patented the use of thoria as a particular additive that greatly improved the high-temperature strength of tungsten filaments. From this development sprang the technique of "dispersion strengthening", still being widely used in the development of high-temperature alloys in the 1990s. In 1913 Coolidge introduced the first controllable hot-cathode X-ray tube, which had a tungsten target and operated in vacuo rather than in a gaseous atmosphere. With this equipment, medical radiography could for the first time be safely practised on a routine basis. During the First World War, Coolidge developed portable X-ray units for use in field hospitals, and between the First and Second World Wars he introduced between 1 and 2 million X-ray machines for cancer treatment and for industrial radiography. He became Director of the Schenectady laboratory in 1932, and from 1940 until 1944 he was Vice-President and Director of Research. After retirement he was retained as an X-ray consultant, and in this capacity he attended the Bikini atom bomb trials in 1946. Throughout the Second World War he was a member of the National Defence Research Committee.
    [br]
    Bibliography
    1965, "The development of ductile tungsten", Sorby Centennial Symposium on the History of Metallurgy, AIME Metallurgy Society Conference, Vol. 27, ed. Cyril Stanley Smith, Gordon and Breach, pp. 443–9.
    Further Reading
    D.J.Jones and A.Prince, 1985, "Tungsten and high density alloys", Journal of the Historical Metallurgy Society 19(1):72–84.
    ASD

    Biographical history of technology > Coolidge, William David

  • 9 Paul, Lewis

    SUBJECT AREA: Textiles
    [br]
    d. April 1759 Brook Green, London, England
    [br]
    English inventor of hand carding machines and partner with Wyatt in early spinning machines.
    [br]
    Lewis Paul, apparently of French Huguenot extraction, was quite young when his father died. His father was Physician to Lord Shaftsbury, who acted as Lewis Paul's guardian. In 1728 Paul made a runaway match with a widow and apparently came into her property when she died a year later. He must have subsequently remarried. In 1732 he invented a pinking machine for making the edges of shrouds out of which he derived some profit.
    Why Paul went to Birmingham is unknown, but he helped finance some of Wyatt's earlier inventions. Judging by the later patents taken out by Paul, it is probable that he was the one interested in spinning, turning to Wyatt for help in the construction of his spinning machine because he had no mechanical skills. The two men may have been involved in this as early as 1733, although it is more likely that they began this work in 1735. Wyatt went to London to construct a model and in 1736 helped to apply for a patent, which was granted in 1738 in the name of Paul. The patent shows that Paul and Wyatt had a number of different ways of spinning in mind, but contains no drawings of the machines. In one part there is a description of sets of rollers to draw the cotton out more finely that could have been similar to those later used by Richard Arkwright. However, it would seem that Paul and Wyatt followed the other main method described, which might be called spindle drafting, where the fibres are drawn out between the nip of a pair of rollers and the tip of the spindle; this method is unsatisfactory for continuous spinning and results in an uneven yarn.
    The spinning venture was supported by Thomas Warren, a well-known Birmingham printer, Edward Cave of Gentleman's Magazine, Dr Robert James of fever-powder celebrity, Mrs Desmoulins, and others. Dr Samuel Johnson also took much interest. In 1741 a mill powered by two asses was equipped at the Upper Priory, Birmingham, with, machinery for spinning cotton being constructed by Wyatt. Licences for using the invention were sold to other people including Edward Cave, who established a mill at Northampton, so the enterprise seemed to have great promise. A spinning machine must be supplied with fibres suitably prepared, so carding machines had to be developed. Work was in hand on one in 1740 and in 1748 Paul took out another patent for two types of carding device, possibly prompted by the patent taken out by Daniel Bourn. Both of Paul's devices were worked by hand and the carded fibres were laid onto a strip of paper. The paper and fibres were then rolled up and placed in the spinning machine. In 1757 John Dyer wrote a poem entitled The Fleece, which describes a circular spinning machine of the type depicted in a patent taken out by Paul in 1758. Drawings in this patent show that this method of spinning was different from Arkwright's. Paul endeavoured to have the machine introduced into the Foundling Hospital, but his death in early 1759 stopped all further development. He was buried at Paddington on 30 April that year.
    [br]
    Bibliography
    1738, British patent no. 562 (spinning machine). 1748, British patent no. 636 (carding machine).
    1758, British patent no. 724 (circular spinning machine).
    Further Reading
    G.J.French, 1859, The Life and Times of Samuel Crompton, London, App. This should be read in conjunction with R.L.Hills, 1970, Power in the Industrial Revolution, Manchester, which shows that the roller drafting system on Paul's later spinning machine worked on the wrong principles.
    A.P.Wadsworth and J.de L.Mann, 1931, The Cotton Trade and Industrial Lancashire, 1600–1780, Manchester (provides good coverage of the partnership of Paul and Wyatt and the early mills).
    E.Baines, 1835, History of the Cotton Manufacture in Great Britain, London (this publication must be mentioned, but is now out of date).
    A.Seymour-Jones, 1921, "The invention of roller drawing in cotton spinning", Transactions of the Newcomen Society 1 (a more modern account).
    RLH

    Biographical history of technology > Paul, Lewis

  • 10 Zeiss, Carl

    [br]
    b. 11 September 1816 Weimar, Thuringia, Germany
    d. 3 December 1888 Jena, Saxony, Germany
    [br]
    German lens manufacturer who introduced scientific method to the production of compound microscopes and made possible the production of the first anastigmatic photographic objectives.
    [br]
    After completing his early education in Weimar, Zeiss became an apprentice to the engineer Dr Frederick Koerner. As part of his training, Zeiss was required to travel widely and he visited Vienna, Berlin, Stuttgart and Darmstadt to study his trade. In 1846 he set up a business of his own, an optical workshop in Jena, where he began manufacturing magnifying glasses and microscopes. Much of his work was naturally for the university there and he had the co-operation of some of the University staff in the development of precision instruments. By 1858 he was seeking to make more expensive compound microscopes, but he found the current techniques primitive and laborious. He decided that it was necessary to introduce scientific method to the design of the optics, and in 1866 he sought the advice of a professor of physics at the University of Jena, Ernst Abbe (1840–1905). It took Zeiss until 1869 to persuade Abbe to join his company, and two difficult years were spent working on the calculations before success was achieved. Within a few more years the Zeiss microscope had earned a worldwide reputation for quality. Abbe became a full partner in the Zeiss business in 1875. In 1880 Abbe began an association with Friedrich Otte Schott that was to lead to the establishment of the famous Jena glass works in 1884. With the support of the German government, Jena was to become the centre of world production of new optical glasses for photographic objectives.
    In 1886 the distinguished mathematician and optician Paul Rudolph joined Zeiss at Jena. After Zeiss's death, Rudolph went on to use the characteristics of the new glass to calculate the first anastigmatic lenses. Immediately successful and widely imitated, the anastigmats were also the first of a long series of Zeiss photographic objectives that were to be at the forefront of lens design for years to come. Abbe took over the management of the company and developed it into an internationally famous organization.
    [br]
    Further Reading
    L.W.Sipley, 1965, Photography's Great Inventors, Philadelphia (a brief biography). J.M.Eder, 1945, History of Photography, trans. E.Epstean, New York.
    K.J.Hume, 1980, A History of Engineering Metrology, London, 122–32 (includes a short account of Carl Zeiss and his company).
    JW / RTS

    Biographical history of technology > Zeiss, Carl

  • 11 Hopkinson, John

    [br]
    b. 27 July 1849 Manchester, England
    d. 27 August 1898 Petite Dent de Veisivi, Switzerland
    [br]
    English mathematician and electrical engineer who laid the foundations of electrical machine design.
    [br]
    After attending Owens College, Manchester, Hopkinson was admitted to Trinity College, Cambridge, in 1867 to read for the Mathematical Tripos. An appointment in 1872 with the lighthouse department of the Chance Optical Works in Birmingham directed his attention to electrical engineering. His most noteworthy contribution to lighthouse engineering was an optical system to produce flashing lights that distinguished between individual beacons. His extensive researches on the dielectric properties of glass were recognized when he was elected to a Fellowship of the Royal Society at the age of 29. Moving to London in 1877 he became established as a consulting engineer at a time when electricity supply was about to begin on a commercial scale. During the remainder of his life, Hopkinson's researches resulted in fundamental contributions to electrical engineering practice, dynamo design and alternating current machine theory. In making a critical study of the Edison dynamo he developed the principle of the magnetic circuit, a concept also arrived at by Gisbert Kapp around the same time. Hopkinson's improvement of the Edison dynamo by reducing the length of the field magnets almost doubled its output. In 1890, in addition to-his consulting practice, Hopkinson accepted a post as the first Professor of Electrical Engineering and Head of the Siemens laboratory recently established at King's College, London. Although he was not involved in lecturing, the position gave him the necessary facilities and staff and student assistance to continue his researches. Hopkinson was consulted on many proposals for electric traction and electricity supply, including schemes in London, Manchester, Liverpool and Leeds. He also advised Mather and Platt when they were acting as contractors for the locomotives and generating plant for the City and South London tube railway. As early as 1882 he considered that an ideal method of charging for the supply of electricity should be based on a two-part tariff, with a charge related to maximum demand together with a charge for energy supplied. Hopkinson was one the foremost expert witnesses of his day in patent actions and was himself the patentee of over forty inventions, of which the three-wire system of distribution and the series-parallel connection of traction motors were his most successful. Jointly with his brother Edward, John Hopkinson communicated the outcome of his investigations to the Royal Society in a paper entitled "Dynamo Electric Machinery" in 1886. In this he also described the later widely used "back to back" test for determining the characteristics of two identical machines. His interest in electrical machines led him to more fundamental research on magnetic materials, including the phenomenon of recalescence and the disappearance of magnetism at a well-defined temperature. For his work on the magnetic properties of iron, in 1890 he was awarded the Royal Society Royal Medal. He was a member of the Alpine Club and a pioneer of rock climbing in Britain; he died, together with three of his children, in a climbing accident.
    [br]
    Principal Honours and Distinctions
    FRS 1878. Royal Society Royal Medal 1890. President, Institution of Electrical Engineers 1890 and 1896.
    Bibliography
    7 July 1881, British patent no. 2,989 (series-parallel control of traction motors). 27 July 1882, British patent no. 3,576 (three-wire distribution).
    1901, Original Papers by the Late J.Hopkinson, with a Memoir, ed. B.Hopkinson, 2 vols, Cambridge.
    Further Reading
    J.Greig, 1970, John Hopkinson Electrical Engineer, London: Science Museum and HMSO (an authoritative account).
    —1950, "John Hopkinson 1849–1898", Engineering 169:34–7, 62–4.
    GW

    Biographical history of technology > Hopkinson, John

  • 12 Bilgram, Hugo

    [br]
    b. 13 January 1847 Memmingen, Bavaria, Germany
    d. 27 August 1932 Moylan, Pennsylvania, USA
    [br]
    German (naturalized American) mechanical engineer, inventor of bevel-gear generator and economist.
    [br]
    Hugo Bilgram studied mechanical engineering at the Augsburg Maschinenbau Schule and graduated in 1865. He worked as a machinist and draughtsman for several firms in Germany before going to the United States in 1869.
    In America he first worked for L.B.Flanders Company and Southwark Foundry \& Machine Company in Philadelphia, designing instruments and machines. In the 1870s he also assisted in an evening class in drawing at The Franklin Institute. He devised the Bilgram Valve Diagram for analysing the action of steam engine slide valves and he developed a method of drawing accurate outlines of gear teeth. This led him to design a machine for cutting the teeth of gear wheels, particularly bevel wheels, which he patented in 1884. He was in charge of the American branch of Brehmer Brothers Company from 1879 and in 1884 became the sole owner of the company, which was later incorporated as the Bilgram Machine Works. He was responsible for several other inventions and developments in gear manufacture.
    Bilgram was a member of the Franklin Institute, the American Academy of Political and Social Science, the Philadelphia Technische Verein and the Philadelphia Engineer's Club, and was elected a member of the American Society of Mechanical Engineers in 1885. He was also an amateur botanist, keenly interested in microscopic work.
    [br]
    Principal Honours and Distinctions
    Franklin Institute Elliott Cresson Gold Medal. City of Philadelphia John Scott Medal.
    Bibliography
    Hugo Bilgram was granted several patents and was the author of: 1877, Slide Valve Gears.
    1889, Involuntary Idleness.
    1914, The Cause of Business Depression.
    1928, The Remedy for Overproduction and Unemployment.
    Further Reading
    Robert S.Woodbury, 1958, History of the Gear-cutting Machine, Cambridge, Mass, (describes Bilgram's bevel-gear generating machine).
    RTS

    Biographical history of technology > Bilgram, Hugo

  • 13 Cotton, William

    SUBJECT AREA: Textiles
    [br]
    b. 1819 Seagrave, Leicestershire, England
    d. after 1878
    [br]
    English inventor of a power-driven flat-bed knitting machine.
    [br]
    Cotton was originally employed in Loughborough and became one of the first specialized hosiery-machine builders. After the introduction of the latch needle by Matthew Townsend in 1856, knitting frames developed rapidly. The circular frame was easier to work automatically, but attempts to apply power to the flat frame, which could produce fully fashioned work, culminated in 1863 with William Cotton's machine. In that year he invented a machine that could make a dozen or more stockings or hose simultaneously and knit fashioned garments of all kinds. The difficulty was to reduce automatically the number of stitches in the courses where the hose or garment narrowed to give it shape. Cotton had early opportunities to apply himself to the improvement of hosiery machines while employed in the patent shop of Cartwright \& Warner of Loughborough, where some of the first rotaries were made. He remained with the firm for twenty years, during which time sixty or seventy of these machines were turned out. Cotton then established a factory for the manufacture of warp fabrics, and it was here that he began to work on his ideas. He had no knowledge of the principles of engineering or drawing, so his method of making sketches and then getting his ideas roughed out involved much useless labour. After twelve years, in 1863, a patent was issued for the machine that became the basis of the Cotton's Patent type. This was a flat frame driven by rotary mechanism and remarkable for its adaptability. At first he built his machine upright, like a cottage piano, but after much thought and experimentation he conceived the idea of turning the upper part down flat so that the needles were in a vertical position instead of being horizontal, and the work was carried off horizontally instead of vertically. His first machine produced four identical pieces simultaneously, but this number was soon increased. Cotton was induced by the success of his invention to begin machine building as a separate business and thus established one of the first of a class of engineering firms that sprung up as an adjunct to the new hosiery manufacture. He employed only a dozen men and turned out six machines in the first year, entering into an agreement with Hine \& Mundella for their exclusive use. This was later extended to the firm of I. \& R.Morley. In 1878, Cotton began to build on his own account, and the business steadily increased until it employed some 200 workers and had an output of 100 machines a year.
    [br]
    Bibliography
    1863, British patent no. 1,901 (flat-frame knitting machine).
    Further Reading
    F.A.Wells, 1935, The British Hosiery and Knitwear Industry: Its History and Organisation, London (based on an article in the Knitters' Circular (Feb. 1898).
    A brief account of the background to Cotton's invention can be found in T.K.Derry and T.I. Williams, 1960, A Short History of Technology from the Earliest Times to AD 1900, Oxford; C. Singer (ed.), 1958, A History of Technology, Vol. V, Oxford: Clarendon Press.
    F.Moy Thomas, 1900, I. \& R.Morley. A Record of a Hundred Years, London (mentions cotton's first machines).
    RLH

    Biographical history of technology > Cotton, William

  • 14 Nash, John

    [br]
    b. c. 1752 (?) London, England
    d. 13 May 1835 Cowes, Isle of Wight
    [br]
    English architect and town planner.
    [br]
    Nash's name is synonymous with the great scheme carried out for his patron, the Prince Regent, in the early nineteenth century: the development of Marylebone Park from 1811 constituted a "garden city" for the wealthy in the centre of London. Although only a part of Nash's great scheme was actually achieved, an immense amount was carried out, comprising the Regent's Park and its surrounding terraces, the Regent's Street, including All Souls' Church, and the Regent's Palace in the Mall. Not least was Nash's exotic Royal Pavilion at Brighton.
    From the early years of the nineteenth century, Nash and a number of other architects took advantage of the use of structural materials developed as a result of the Industrial Revolution; these included wrought and cast iron and various cements. Nash utilized iron widely in the Regent Street Quadrant, Carlton House Terrace and at the Brighton Pavilion. In the first two of these his iron columns were masonry clad, but at Brighton he unashamedly constructed iron column supports, as in the Royal Kitchen, and his ground floor to first floor cast-iron staircase, in which he took advantage of the malleability of the material to create a "Chinese" bamboo design, was particularly notable. The great eighteenth-century terrace architecture of Bath and much of the later work in London was constructed in stone, but as nineteenth-century needs demanded that more buildings needed to be erected at lower cost and greater speed, brick was used more widely for construction; this was rendered with a cement that could be painted to imitate stone. Nash, in particular, employed this method at Regent's Park and used a stucco made from sand, brickdust, powdered limestone and lead oxide that was suited for exterior work.
    [br]
    Further Reading
    Terence Davis, 1960, The Architecture of John Nash, Studio.
    ——1966, John Nash: The Prince Regent's Architect, Country Life.
    Sir John Summerson, 1980, John Nash: Architect to King George IV, Allen \& Unwin.
    DY

    Biographical history of technology > Nash, John

  • 15 Leschot, Georges Auguste

    [br]
    b. 24 March 1800 Geneva, Switzerland
    d. 4 February 1884 Geneva, Switzerland
    [br]
    Swiss clockmaker, inventor of diamond drilling.
    [br]
    By about 1843, Leschot, who was renowned for designing machines to produce parts of clocks on an industrialized scale, had gathered that the fine, deep lines he found on an Egyptian red porphyry plate must have been cut by diamonds. He thus resurrected a technology that had been largely forgotten over the centuries, when in 1862 his son, who was engaged in constructing a railway line in Italy, was confronted with the problems of tunnelling through hard rock. In Paris he developed a drilling machine consisting of a casing that rotated in a similar way to the American rope drilling method. The crown of the machine was mounted with eight black diamonds, and inside the casing a stream of water circulated continuously to flush out the mud.
    He took out his first patent in France in 1862, and followed it with further ones in many European countries and in America. He continued to concentrate on his watchmaker's profession and left the rights to his patents to his son. It was Leschot's ingenious idea of utilizing diamonds for drilling hard rock that was later applied in different mining processes. It influenced a series of further developments in many countries, including those of Alfred Brandt and Major Beaumont in England. In particular, the fact that the hollow casing produced a complete core was of importance for the increasing amount of petroleum prospecting in Pennsylvania after Edwin Laurentine Drake's find of 1859, where M.C.Bullock sunk the first deep well (200 m) in the world by diamond drilling in 1870. The efforts of Per Anton Crælius in Sweden made diamond drilling a success worldwide.
    [br]
    Further Reading
    D.Colladon, 1884, "Notice sur les inventions mécaniques de M.G.Leschot, horloger", Archives des Sciences Physiques et Naturelles 3, XI (1):297–313 (discusses the influences of Leschot's invention on other engineers in Europe).
    D.Hoffmann, 1962, "Die Erfindung der Diamantbohrmaschine vor 100 Jahren", Der Anschnitt 14(1):15–19 (contains detailed biographical outlines).
    WK

    Biographical history of technology > Leschot, Georges Auguste

  • 16 Mond, Ludwig

    SUBJECT AREA: Chemical technology
    [br]
    b. 7 March 1839 Cassel, Germany
    d. 11 December 1909 London, England
    [br]
    German (naturalized English) industrial chemist.
    [br]
    Born into a prosperous Jewish merchant family, Mond studied at the Polytechnic in Cassel and then under the distinguished chemists Hermann Kolbe at Marburg and Bunsen at Heidelberg from 1856. In 1859 he began work as an industrial chemist in various works in Germany and Holland. At this time, Mond was pursuing his method for recovering sulphur from the alkali wastes in the Leblanc soda-making process. Mond came to England in 1862 and five years later settled permanently, in partnership with John Hutchinson \& Co. at Widnes, to perfect his process, although complete success eluded him. He became a naturalized British subject in 1880.
    In 1872 Mond became acquainted with Ernest Solvay, the Belgian chemist who developed the ammonia-soda process which finally supplanted the Leblanc process. Mond negotiated the English patent rights and set up the first ammoniasoda plant in England at Winnington in Cheshire, in partnership with John Brunner. After overcoming many difficulties by incessant hard work, the process became a financial success and in 1881 Brunner, Mond \& Co. was formed, for a time the largest alkali works in the world. In 1926 the company merged with others to form Imperial Chemical Industries Ltd (ICI). The firm was one of the first to adopt the eight-hour day and to provide model dwellings and playing fields for its employees.
    From 1879 Mond took up the production of ammonia and this led to the Mond producer-gas plant, patented in 1883. The process consisted of passing air and steam over coal and coke at a carefully regulated temperature. Ammonia was generated and, at the same time, so was a cheap and useful producer gas. Mond's major discovery followed the observation in 1889 that carbon monoxide could combine with nickel in its ore at around 60°C to form a gaseous compound, nickel carbonyl. This, on heating to a higher temperature, would then decompose to give pure nickel. Mond followed up this unusual way of producing and purifying a metal and by 1892 had succeeded in setting up a pilot plant to perfect a large-scale process and went on to form the Mond Nickel Company.
    Apart from being a successful industrialist, Mond was prominent in scientific circles and played a leading role in the setting up of the Society of Chemical Industry in 1881. The success of his operations earned him great wealth, much of which he donated for learned and charitable purposes. He formed a notable collection of pictures which he bequeathed to the National Gallery.
    [br]
    Principal Honours and Distinctions
    FRS 1891.
    Bibliography
    1885, "On the origin of the ammonia-soda process", Journal of the Society of Chemical Industry 4:527–9.
    1895. "The history of the process of nickel extraction", Journal of the Society of Chemical Industry 14:945–6.
    Further Reading
    J.M.Cohen, 1956, The Life of Ludwig Mond, London: Methuen. Obituary, 1918, Journal of the Chemical Society 113:318–34.
    F.C.Donnan, 1939, Ludwig Mond 1839–1909, London (a valuable lecture).
    LRD

    Biographical history of technology > Mond, Ludwig

  • 17 Goulding, John

    SUBJECT AREA: Textiles
    [br]
    b. 1791 Massachusetts, USA d. 1877
    [br]
    American inventor of an early form of condenser carding machine.
    [br]
    The condenser method of spinning was developed chiefly by manufacturers and machine makers in eastern Massachusetts between 1824 and 1826. John Goulding, a machinist from Dedham in Massachusetts, combined the ring doffer, patented by Ezekiel Hale in 1825, and the revolving twist tube, patented by George Danforth in 1824; with the addition of twisting keys in the tubes, the carded woollen sliver could be divided and then completely and continuously twisted. He divided the carded web longitudinally with the ring doffer and twisted these strips to consolidate them into slubbings. The dividing was carried out by covering the periphery of the doffer cylinder with separate rings of card clothing and spacing these rings apart by rings of leather, so that instead of width-way detached strips leaving the card, the strips were continuous and did not require piecing. The strips were passed through rotating tubes and wound on bobbins, and although the twist was false it sufficed to compress the fibres together ready for spinning. Goulding patented his invention in both Britain and the USA in 1826, but while his condensers were very successful and within twenty years had been adopted by a high proportion of woollen mills in America, they were not adopted in Britain until much later. Goulding also worked on other improvements to woollen machinery: he developed friction drums, on which the spools of roving from the condenser cards were placed to help transform the woollen jenny into the woollen mule or jack.
    [br]
    Bibliography
    1826, British patent no. 5,355 (condenser carding machine).
    Further Reading
    D.J.Jeremy, 1981, Transatlantic Industrial Revolution. The Diffusion of Textile Technologies Between Britain and America, 1790–1830s, Oxford (provides a good explanation of the development of the condenser card).
    W.English, 1969, The Textile Industry, London (a brief account).
    C.Singer (ed.), 1958, A History of Technology, Vol. IV, Oxford: Clarendon Press (a brief account).
    RLH

    Biographical history of technology > Goulding, John

  • 18 decision making

    Gen Mgt
    the process of choosing between alternative courses of action. Decision making may take place at an individual or organizational level. The process may involve establishing objectives, gathering relevant information, identifying alternatives, setting criteria for the decision, and selecting the best option. The nature of the decision-making process within an organization is influenced by its culture and structure, and a number of theoretical models have been developed. One well-known method for individual decision making was developed by Charles Kepner and Benjamin Tregoe in their book The New Rational Manager (1981). Decision theory can be used to assist in the process of decision making. Specific techniques used in decision making include heuristics and decision trees. Computer systems designed to assist managerial decision making are known as decision support systems.

    The ultimate business dictionary > decision making

  • 19 work measurement

    Gen Mgt
    the establishment of standard times for the completion of particular work tasks to a particular level of performance. In work measurement, tasks are broken down into elements. The time required for each is established and an assessment of relaxation and contingency allowances is made. Work measurement forms part of work study and is normally conducted subsequent to method study with the aim of increasing efficiency and productivity. Work measurement was developed in the context of industrial production management but has recently become more widely used. Time study and predetermined motion-time systems are used in work measurement.

    The ultimate business dictionary > work measurement

  • 20 develop

    di'veləp
    past tense, past participle - developed; verb
    1) (to (cause to) grow bigger or to a more advanced state: The plan developed slowly in his mind; It has developed into a very large city.) desarrollar(se)
    2) (to acquire gradually: He developed the habit of getting up early.) contraer, adquirir
    3) (to become active, visible etc: Spots developed on her face.) aparecer
    4) (to use chemicals to make (a photograph) visible: My brother develops all his own films.) revelar
    1. desarrollar
    2. revelar
    3. convertirse
    4. surgir / salir
    tr[dɪ'veləp]
    1 (cultivate, cause to grow - gen) desarrollar; (foster - trade, arts) fomentar, promover; (expand - business, industry) ampliar; (build up, improve - skill, ability, talent) perfeccionar
    2 (elaborate, expand - idea, argument, story) desarrollar; (- theory, plan) desarrollar, elaborar
    3 (start - roots) echar; (devise, invent - policy, method, strategy) idear, desarrollar; (- drug, product, technology) crear
    4 (acquire - habit, quality, feature) contraer, adquirir; (- talent, interest) mostrar; (- tendency) revelar, manifestar; (get - illness, disease) contraer; (- immunity, resistance) desarrollar
    5 (exploit - resources) explotar; (- site, land) urbanizar
    6 (film, photograph) revelar
    1 (grow - person, body, nation, region, etc) desarrollarse; (- system) perfeccionarse; (feeling, interest) aumentar, crecer
    2 (evolve - emotion) convertirse ( into, en), transformarse ( into, en), evolucionar; (plot, novel) desarrollarse
    3 (appear - problem, complication, symptom) aparecer, surgir; (situation, crisis) producirse
    4 (of film, photograph) salir
    \
    SMALLIDIOMATIC EXPRESSION/SMALL
    to develop a taste for something cogerle gusto a algo
    develop [di'vɛləp] vt
    1) form, make: desarrollar, elaborar, formar
    2) : revelar (en fotografía)
    3) foster: desarrollar, fomentar
    4) exploit: explotar (recursos), urbanizar (un área)
    5) acquire: adquirir
    to develop an interest: adquirir un interés
    6) contract: contraer (una enfermedad)
    1) grow: desarrollarse
    2) arise: aparecer, surgir
    v.
    revelar (una película) v.
    v.
    desarrollar v.
    desenvolver v.
    explotar v.
    progresar v.
    urbanizar v.
    dɪ'veləp
    1.
    1)
    a) (elaborate, devise) \<\<theory/plan\>\> desarrollar, elaborar; \<\<idea\>\> desarrollar; \<\<method\>\> idear, desarrollar; \<\<plot/story/character\>\> desarrollar
    b) ( improve) \<\<skill/ability/quality\>\> desarrollar
    c) ( exploit) \<\<land/area\>\> urbanizar*
    d) ( expand) \<\<business/range\>\> ampliar*
    e) ( create) \<\<drug/engine\>\> crear
    2) ( acquire) \<\<immunity/resistance\>\> desarrollar; \<\<disease\>\> contraer* (frml)

    I've developed a taste for... — le he tomado (el) gusto a...

    3) ( Phot) revelar

    2.
    vi
    1)
    a) ( grow) \<\<person/industry\>\> desarrollarse; \<\<interest\>\> crecer*, aumentar
    b) ( evolve)

    to develop INTO something — convertirse* or transformarse en algo

    c) ( Econ) \<\<nation/region\>\> desarrollarse, progresar
    d) ( unfold) \<\<plot/novel\>\> desarrollarse
    2) ( appear) \<\<problem/complication\>\> surgir*, aparecer*; \<\<crisis\>\> producirse*
    [dɪ'velǝp]
    1. VT
    1) (=make bigger, stronger etc) [+ mind, body] desarrollar; (fig) [+ argument, idea] desarrollar
    2) (=generate) [+ plan] elaborar; [+ process] perfeccionar
    3) (=acquire) [+ interest, taste, habit] adquirir; [+ disease] contraer; [+ tendency] coger, desarrollar; [+ engine trouble] empezar a tener
    4) (=build on) [+ region] desarrollar, fomentar; [+ land] urbanizar; [+ site] ampliar

    this land is to be developedse va a construir en or urbanizar este terreno

    5) (=exploit) [+ resources, mine etc] explotar
    6) (Phot) revelar
    2. VI
    1) (=change, mature) desarrollarse

    to develop intoconvertirse or transformarse en

    2) (=progress) [country] desarrollarse

    how is the book developing? — ¿qué tal va el libro?

    3) (=come into being) aparecer; [symptoms] aparecer, mostrarse
    4) (=come about) [idea, plan, problem] surgir

    it later developed that... — más tarde quedó claro que...

    * * *
    [dɪ'veləp]
    1.
    1)
    a) (elaborate, devise) \<\<theory/plan\>\> desarrollar, elaborar; \<\<idea\>\> desarrollar; \<\<method\>\> idear, desarrollar; \<\<plot/story/character\>\> desarrollar
    b) ( improve) \<\<skill/ability/quality\>\> desarrollar
    c) ( exploit) \<\<land/area\>\> urbanizar*
    d) ( expand) \<\<business/range\>\> ampliar*
    e) ( create) \<\<drug/engine\>\> crear
    2) ( acquire) \<\<immunity/resistance\>\> desarrollar; \<\<disease\>\> contraer* (frml)

    I've developed a taste for... — le he tomado (el) gusto a...

    3) ( Phot) revelar

    2.
    vi
    1)
    a) ( grow) \<\<person/industry\>\> desarrollarse; \<\<interest\>\> crecer*, aumentar
    b) ( evolve)

    to develop INTO something — convertirse* or transformarse en algo

    c) ( Econ) \<\<nation/region\>\> desarrollarse, progresar
    d) ( unfold) \<\<plot/novel\>\> desarrollarse
    2) ( appear) \<\<problem/complication\>\> surgir*, aparecer*; \<\<crisis\>\> producirse*

    English-spanish dictionary > develop

См. также в других словарях:

  • Method acting — is a phrase that loosely refers to a family of techniques used by actors to create in themselves the thoughts and emotions of their characters, so as to develop lifelike performances. It can be contrasted with more classical forms of acting, in… …   Wikipedia

  • Method engineering — Not to be confused with Methods engineering, a subspecialty of Industrial engineering Example of a Method Engineering Process. This figure provides a process oriented view of the approach used to develop prototype IDEF9 method concepts, a… …   Wikipedia

  • Method of loci — The method of loci (plural of Latin locus for place or location), also called the memory palace, is a mnemonic device introduced in ancient Roman rhetorical treatises (in the anonymous Rhetorica ad Herennium, Cicero s De Oratore, and Quintilian s …   Wikipedia

  • Combinatorial method (linguistics) — For other uses of combinatorial methods, see combinatorial method (disambiguation). The combinatorial method is used to study texts which are written in an unknown language, and to study the language itself, where the unknown language has no… …   Wikipedia

  • method — The mode or manner or orderly sequence of events of a process or procedure. SEE ALSO: fixative, operation, procedure, stain, technique. [G. methodos; fr. meta, after, + hodos, way] Abell Kendall m. a …   Medical dictionary

  • Method Y — An experiential soft skills training methodology based on discovery, evaluation and personal choice. Method Y utilizes a set of tools deriving from an array of arts, sciences and communication perspectives. Central objective of method Y is to… …   Wikipedia

  • Method of variation of parameters — In mathematics, variation of parameters also known as variation of constants, is a general method to solve inhomogeneous linear ordinary differential equations. It was developed by the Italian French mathematician Joseph Louis Lagrange.For first… …   Wikipedia

  • method — [16] Method comes via French méthode and Latin methodus from Greek méthodos, which meant ‘pursuit’. It was a compound noun formed from the prefix metá ‘after’ and hodós ‘way, journey’ (found also in English episode, exodus, and period). ‘Pursuit’ …   The Hutchinson dictionary of word origins

  • method — [16] Method comes via French méthode and Latin methodus from Greek méthodos, which meant ‘pursuit’. It was a compound noun formed from the prefix metá ‘after’ and hodós ‘way, journey’ (found also in English episode, exodus, and period). ‘Pursuit’ …   Word origins

  • Comparative method — This article is about the comparative method in linguistics. For other kinds of comparative methods, see Comparative (disambiguation). Linguistic map representing a Tree model of the Romance languages based on the comparative method. Here the… …   Wikipedia

  • Scientific method — …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»